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1. Introduction:

Linear time—invariant differential equations have been studied over the past

three decades and the stability properties of systems described by the vector

differential equation x Ax are known to be determined by the eigenvalues of

the matrix A. In contrast , the wealth of techniques available for nonlinear

systems — oscillations, asymptotic behavior , per turba tion theory , etc. — reflects

the obvious fact that a broad generalization of one theory is not applicable to

all classes of systems. Even if our inquiries are limited to the two dimensional

case, the volume of detailed work on special systems such as the Vander Pol or

Duff ings equations and the work of the Russian school in the early fifties on

absolute stability demonstrates the need to treat these problems individually.

The results of this paper indicate that a profitable generalization of second

order differential equations may be possible when we confine our attention to the

quadratic case: r.i r T
l x i  I X  C x

,
~~ I .‘I — I  T ~~f (x) (1)

L x2J LX

and its generalization

,.A x +f(x ) (2)

which La considered in a subsequen t paper. Moreover , the insight, provided by this

initial study will also aid in the analysis of higher order quadratic system..

Mor. than being a convenient class of nonlinear systems, quadratic differ-

entia l equat ions have a traditional importance in stability literature. Given

an arbitrary auton omous diffsr.ntial equation ,~ — g(x) , g(z) may be

-~~~~~~ - — - .
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V expanded in a Taylor series if it satisfies certain regularity conditions.

LyapunoV proved that if the equilibrium state of the linear approximation is

asymptotically stable (unstable) the nonlinear system will also be asymptotically

stable (unstable). However, in the critical case when the linear approximation

is merely stable, the higher order terms must be examined to determine the nature

of the stability of the equilibrium State and interest shifts to an equation of

the form (2).

Recently the special class of bilinear systems

x A x + u B x  (3)

has received a great deal of attention in the control literature and the princi-

pal results of this theory are influencing the direction of research on general

nonlinear systems. When the control u(t) in equation (3) is a linear function of

the state variables, equation (3) becomes a special case of (2) and the stability

properties of such systems are bound to be of interest to control theorists.

Further , quadratic differential equations are also known to arise in adaptive

control [5] where the control parameters of a linear system are continuously ad-

justed and becone state variables of a quadratic system.

In this paper MS umds~~a~~ a detailed stu4y of the stability properties of

the quadratic differential equation cA? . After observin

never be asymptotically stable the equilibrium itate of are claseified in

terms of the matrices C and N . Necessary and sufficient conditions for the sta-

bility of the origin are derived La—.es#4.e.~~ and constitute the principal con-

tribution of this paper. Finally , these conditions are re—derived and elaborated

using polar coord inates which allow a convenient classification of instability

behavior. This exhausts the stability characteristics (in the sense of Lyapunov)

of second order quadratic differential equations. 

_
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P1 2. Homogeneous Systems of Even Degree:

nConsider a dynamical system in K def ined by

x — h(x) where h(cx) — ckh(x) and k > 1. (4)

The “homogeneity” of h forces the direction of the field to be constant along any

straight line through the origin. The consequences of this simple property pervade

the following sections.

If p (t;x0
) denotes the solution of (4) given initial condition p(t

0
;x
0
) — x0,

it can be easi ly shown (2] that p(t;x
0
) — Bp (B

k_l
t;x0). Now suppose k is even:

letting 8 — -1 we have

p( t ;—x 0) — —p (—t;x0
) (5)

which implies that any trajectory for t ~ 0 through x
0 

has an associated trajectory

through —x0 for t ~ 0 which 1. its reflection. Hence, if ~i is a neighborhood of

the origin and ±x0 ~ ~ but ±p(T;x0)C ~ for some time T > t0 
then by (5) the trajec-

tory p(t;-.p(T;x
0
)) will leave (~ af ter a

finite time and pass through —x 0 after

T - t
0 
time ha. elapsed (Figure 1]. 

p(T ,x)~
This , in turn, implies that an even homogene-

ous system can never be asymptotically stable. 
p(T,x 0)

With this general observation we set _____

k — — 2 and devote the remainder of the 
•

paper to the study of c — f(x) in ~2•
Figure 1. Reflection Property of Even

Instability of an Isolated Singularity~ at the Origin: Homogeneous System

Th. f i rst direct consequence of the homogeneity property , (4) , for the system

(1) is that a second order homogeneous differential equation of second degree cannot

be stab is un]sss its f ield vanishes on an entire line .

.tc~ ~~~~~ ~

-
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Suppose the origin is stable: i.e. for any £ > 0 we can find a 6 ‘ 0 such

that trajectories starting in 86 — the ball of radius 6 around the origin — always
remain in B~. From the preceding discussion this system cannot be attractive.

Hence , for any ~ > 0 we can find a v ‘ 0 such that trajectories which start outside

B never penetrate 
~~ 

Then by suitably choosing v < < 6 < c, any trajectory

starting in 
~l 

~ B6 — B will, remain in B — B for all t ) 0, and hence in

(see fig. 2). By the Poincar~—8endixson

theory [3] any autonomous trajectory in a

closed subset of R2 must be either attracted

~~~~ E:~::~ ~ 
) B

in at least two different directions. But

this violates homogeneity, hence must

contain a singular point. By construction,

this cannot be the origin. Since f (y) — 0,

y # 0 implies f(ay) - 0 by homogeneity , the Figure 2.

field must vanish on the entire line through this singular point and the origin.

The next section will investigate the existence of such lines for the quad-

ratic differential equation.

3. Equilibria of Second Order Quadratic Systems:

We now consider the par ticular class of second degree second order sys tems

d.scrib.d by (1).

T
x., — x Cx

(1)
x2 • X Ibt

C
with which this paper La chiefly conc.rn.d. Wi will assume that neither C nor H

is identically zero, and , without loss of generality, that both are sy .tric.

Pros the discussion in the previous section it is clear that th. locus of th. set

it 
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  _ _ _  _ _ _ _ _ _
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of critical points of f is crucial to the stability properties of (1). Since

this is completely determined by C and H, well—known properties of symmetric

matrices yield the following exhaustive classification of the types of equili-

brium states of the quadratic differential equation. The field in (1) may vanish

(i) only at the origin

(ii) along a straight line through the origin

(iii) along two straight lines through the origin.

If either G or H is definite, the system is obviously of type (i). If C and H

are indefinite, but of full  rank , the system may be of type (i), (ii), or (iii).

If C is singular and H is indefinite and of full rank (or vice versa) the system

is of type (i) unless H maps the zero eigenvector of C into its orthogonal comple-

ment (i.e. Cx — 0 & ~
T
8~ — 0) in which case the system is of type (ii). If C and

H are both singular then the system is of type (i) unless G = czH, in which case

we get type (ii). These cases are illustrated in the following examples:

Example 3.1: C & H full rank, indefinite.

10 1/21 1’ o~(a) If C • and H — I , then — x x2 — 0 is satisfiedL112 °J L° — 1J
111 lo l

by the vectors and and T~~ — X
1

2 
— X

2

2 
— 0 is satisfied by the vectors

L°J L1
111 1 ii Ix TGxl
I l and I ~

, buti T 
— 0 has only the trivial solution. The system is type (i).

L’J L’J Lx HxJ

10 1/21 -l lo il Ill lol
(b) If C — I and H — C — I — 4G then~ I and I both

L”2 ° J L2 °i L°i L’J
rI x G x I  
~1~2sati sfy x T I •I — 0 and the system is type (iii).

Lx H3
~J L4z1J12

C

_ _ _ _ _ _  -- —--~— 
— - ---~~~~~ - -.
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f o  1/21 1 1 1/21 Iii rol

(c) I f G — ~ l a n d H — I  , then xTC x = x x  O for l 1 , 1

~~~~~ 
- xl(xl + x 2) 

:~~ f o r[] { ] 
. Hence - 0 alon5

[ ~ 

and

is type (ii).

Example 3.2: C & H singular.

11 ol ía ol lo l  T 2(a) If C — I l and H —j f , then ?j l satisf Lea x Ox — x
2 

— 0

L° OJ L 0  lj  L1J
2uniquely , and A l  satisfies xTHX — x1 — 0 uniquely so the system is type (i).

I_ O J

t~
i
~ ol r-~ ol 1

. 
o~ I X ’~GX~(b) If C — and H — —G — I then I I satisf ies T

2 L° OJ L° oJ L1J L x 1~
[x ’~~~

2 
0 uniquely.

~~Xl, J

Example 3.3: C indefinite , full rank ; H singular .

1 ° “~1 1’ 11 1~T1 101 T(a)  If C — I )and H — then I and[ j satisfy x Cx — 0

and [ J satisfies :TH X X
1
2 + 2~~

x2 + x 2
2 

- 

~~~~~~ 
hence the origin is the

only equilibrium. ~1 —
~ rr o  1/2 1 1 0  °I I l

(b) If C — and H —~ 
then , the zero eigenvector of H,

L”2 oJ L° ~J L0
10 1

Li mapped by C into I I —  its orthogonal complement. The system is of type (ii).
Lh/2 J

In st~~ ary, the necessary 
condition of a zero line stipulates that stable

systems must be of th. kind 3.l.b, 3.l.c, 3.2.b, 3.3.b. Sufficient conditions

are d.rived in th. next section.

I
_ 

-~~~~~~~~~~~~~~~~~~~~~~~~~-
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4. Stability of Second Order Quadratic Systems:

From the discussion in section 2 it follows directly that any quadratic sys-

tem of type (1), with a unique isolated equilibrium at the origin, is unstable.

In this section we shall further refine necessary conditions and finally arrive

at conditions which are both necessary and sufficient  for stability. This is most

easily accomplished by first deriving a special form for f(x) in (1) that charac-

terizes systems of type (ii) and (iii).

Quadratic Differential Equations with Non—isolated Equilibria:

If the origin is not an isolated equilibrium (i.e. if the system is not of
T Ttype (i)) then let lieu — 1 and f(e) — 0 (or e Ge — e He 0) . By homogeneity (4)

we know the whole line Xe (A c IR) is a set of critical points of f. Now define a

new coordinate system by the orthogonal transformation y = RTx where R ( e c]

(hil — licil — 1 and eTc — 0). Then r Ty Py
f ( x) = f(Ry ) — II TY Q Y

r o eTGcl a e~ac
where p 1 T T and Q I T Tc G e  c G c  c H e  c H c

Hence we can factor a y2 ~~~ out of both quadratic forms to write

f(x) — cTx Dx (7)

I 2ercc cTocl I C~G] 12 ~ T
where D — I T T ~

T
I~~~

_
~~RI H

L 2e Nc c Hc J Lc HJ j,,0 lJ

Equation (7) expresses the fact that any quadratic system whose field vanishes

along at least one line has solutions which are associated with a linear system

z — BDz (B c~~) (i t)

V 
_______ _



—8—

Given a fixed Initial condition , z0, the solution of (79.) for any constant 8 is
B

z
8
(t) — eDBtz0, thus z8 

(t ) — z
6 
(r) where t — -

~~‘~~ t. In other words, the trajec—
1 2 2

tories of (7&) cut out identical manifolds in H2 for each B , although their time

parametrization on these manifolds Is dilated or contracted by an appropriate

constant. More generally , if we are given

x — 8(t)Dx (7t)

then x(t) — eDJ8(t~~
t
x0. Again, the solution of (7t) for any scalar time function

8(t) given initial condition x0 will be contained in the same manifold as z (t);81
however , its time parametrization will be varied by the function J B(t)dt. Thus, if

0
we think of (7) as a particular case of (7t) where 8 ( t )  = c

Tp(t;x
0
) has been com-

puted a priori, then we see that all trajectories of the quadratic differential

equation with a non—isolated set of equilibria must lie on manifolds determined

by the linear system (71). With this observation in mind , we may now extend neces-

sary conditions for stability by considering different classes of linear second

order time—invariant systems. Specifically we will examine the nature of (7) when

the equilibrium state of the linear system (79.) is a node, center or focus.

a. D singular:

Suppose D kb
T 

— a singular matrix . Then (7) may be re—written as

x - [x~ ,cT
x] k (8)

The symmetric part of bcT is indefinite when b ~ c. In this case (8) is of the

form x — k XTGX, hence C — k
2/k

1 
H is indefinite and from the discussion in section

3 this is the only possible occurrence of a system type (iii). Clearly this equa-

tion defines a field whose direction is uniformly specified by the vector k and

which vanishes on the two lines Xe1, Xe 2 (Ac IR) , satisfying ei
TGei

l. 0. If k
TGk # 0

C 

______
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then either p(t;k) or p(t;—k) will tend to

infinity along the vector k (or —k) as

t ÷ ~ since X
T
GX has the same

x — X(t)k
sign for t ~ t0. This Is illustrated in

figure La.

A more interesting- case arises when

x
T
~x 0 is satisfied on the line determined

by k. Let r also satisfy this equality

(r ~ k) and choose the four points Figure 3.a. Type (Ii i) : two zero lines
unaligned with field direction.

p — tk±ar (a c R). The field vector at these points is either in the positive or

negative direction of k as determined by pTGp — 2akTGr or _2ak
TGr. If ~ > 0 and

we assume kTGr < 0 (note kTCb ~ 0 since

k ~ 
b) it follows itmnediately that

2a~~ ~: :~::::~::~:‘ ~~~~~~~~of negative k as shown in figure 3.b. 
,
/

(k-ar 
_______________

If kTCr < 0 then the alternate pair of

trajectories is unstable. This exhausts

the possible occurrences of type (iii) 
I

equations . Hence necessary conditions

for stability have been extended to cx— /

d ude all but systems of type (ii) — with
Figure 3.b. Type (iii): field direction

a single line of equilibria, aligned with one of two zero lines.

The remaining case of singular D occurs when the matrix bc
T 
in (8) is symmetric:

i.e. b — c. If k # c~ then either p( t ;k)  or p(t;—k) follows the line determined by

k to infinity. If k — c,1, then equation (7) may be written x — c1 xTcctx and every

trajectory which has non—zero motion tends to infinity in the direction c as shown

in figure 4.
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b. D Non—Singular with Real Eigenvalues:

If the equilibrium of (79. ) Is a node

~~ 

~~

.
( i .e .  the eigenvalues of D are real and

non—zero) then its associated quadratic

system (7) must be unstable. If D has

an eigenvector , k, which is not orthogonal

to c then either p(t;k) or p (t;—k) must ~~~

tend to infinity in the direction k. This

is illustrated in Figure 5.a. If no such Figure 4. Type (ii): field direction
aligned with unique ero line

and c its only direct eigenvector . In ~~
this case, since all manifolds of (7t) ‘S

k exists then D must be non—diagonalizable

intersect the equilibrium set of (7) only

once (excluding , of course , that set itself)

as depicted in Figure 5.b, and since the

solutions on these manifolds are mirror

reflections across the origin (from section

2), trajectories on one side of the zero

line of (7) must tend to infinity. Figure 5.a. Type (ii): Pure Nodal
Behavior

By this argument we have excluded all

systems of form (7) whose D matrix has real

(: 
_ _

‘S‘S‘Seigenvalues. Thus the following is a state— ‘S‘S
‘S

ment of the refined necessary conditions: ‘S

the quadratic different ia l  equation (1) is

stable only If its field vanishes on a

single line through the origin and its

assoctated linear system (71) exhibits

center or focus (whether stable or unstable) Figure 5.b. Type (ii): Partial Nodal
Behavior

c behavior. We will now demonstrate that this condition is also sufficient.

S -~ ~ ..- —
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14 c. D with Complex Conjugate Eigenvalues:

If the solution manifolds of (71) intersect every direction on the plane at

a finite point at least once then , recalling the condition from section 2 that

every trajectory of (1) must be contained in a half plane we might suspec t tha t

(7) is stable when D has complex conjugate eigenvalues. In this case, the con-

taining half plane is defined by the zero line c1 and the solution to (7) is

trapped on a half loop of the spiral or circle defined by the solution of (71).

This can be argued more formally . Define L(x0
) ~ fy c 1R

2
1 ( t  < °)(y — eDt x0

)}

— the manifold cut out by a particular solution of (79.) given initial state x0,

and the half plane P ~ {y c R2IyTx0 > 0). If p(t;x
0
) is a solution of (7) then

(~t) p(t;x0) c L(x0)nP. Since (1) is well behaved , the fact that L(x0)nP may be dis-

connected is of no concern—we assume that p(t;x0) lies entirely on the branch, 
A , of

PnL(x
0
) which is connected to x0

. Clearly A is contained within the closed half—annulus

of radius~~c0lI±6 for some constant 
6. Having ruled out the possibility of closed

paths we must have (by Bendixaon Theory) p(t;x0)—~~ , ~ 
c PnL(x0). Inspecting (7)

it is obvious that lies on the line orthogonal to c. Hence for an arbitrarily

small £ > 0 we can always choose 11x011 small enough to obtain p(t;x0) £ B (Vt > t0).

The system is stable. Since (1) is homogeneous any stability characteristic must

be global. Hence we have the following:

Theorem: The second order quadratic differential equation (1) is globally stable

if and only if it is of the form

. T
x - c xDx

and the eigenvalu4s of the,,matrix D are complex ,
r ~ 1/21 [—.76 — .15] T I 1

Example: I f G — I  I and H~~I I t h e n x— c x D x vithc l
a... [1/2 oJ L_ .15 o j L°I 0 1 1

and D — 
~~
. Since the eigenvaluea of D ace complex the system is stable.

L— ’76 — ’30J
The system was simulated and results are plotted in Figure 6.a.

10 1/21 1—i ol • T I i
Example: If C — I land H — l I then x — C xDx with c — IL”2 °J 1 oJ L0
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ro 11
• and D —

~ 
. Since the eigenvaluea of D are imaginary the system is stable.

L-’ ~J
• The system was simulated and results are plotted in figure 6.b.

5. Global Behavior of Second Order Quadratic Systems:

Results of earlier sections indicate that most quadratic systems are unstable.

• Hence the derivation of necessary and sufficient conditions for stability cannot

address the qualitative behavior of the solutions in most instances of equation (1).

To fill this gap, and since the investigation of instability behavior is an intrin—

sically important component of any stability analysis, this section will be con-

cerned with the classification of the global properties of second order quadratic

systems.

a. Polar Coordinate Representation:

For the purposes of this investigation it is mos t convenient to express equa-

tion (1) in polar form. Using the transformation p ~ /x~ + x~, 0 — arc tan we

may write

p — l/ p (x
1
x
1
+x2x2)

• 2 • .

O — 1/p (x 1x2—x2x1)

where — xTGx and — xTHx from (1) . If we define g(v) ~ g2v2 
+ g

0
v + g1 and

h(v) e h2v
2 

+ h
0
v + h1,

* and let 0 c (— n / 2 , tr / 2)  then this may be re—written as

— ~2 cos3 O[g(tan 0) + tan 0 h(tan 0)]

• 3 (9)
o — p cos 0 [h(tan 0) — tan 0 g(tan 0))

Recalling from section 2 that the solutiona of (1) behave symmetrically across any

( line through the origin , it is clear that there is no loss of generality in re-

stricting 6 to the given open interval.

* [g
~ 

1/2 g
~ ] [ h1 

1/2 h0
L t  c — I  I a n d f l — I

L”2 g0 ~2 J L1/2 h0 h2
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Once again , the stability analysis of (9) requires an identification of its

equilibrium states. If p 0, then p — 0 - 0; the abscissa in the new coordinate

system (the origin in (1)) is an equilibrium set. For p ~ 0, the equilibrium

states of (9) are completely determined by 0, which is a direct consequence of
x2

homogeneity. Parametrizing the open right half plane by the scalar v — tan 0 — 1
the critical points of (9) are obtained by simultaneously solving the equations

r(v) ~ g (v) + vh(v) — 0
(10)

p(v ) ~ h(v) — vg (v) — 0

where r or p (or both) are cubic polynomials in v. In the sequel we will assume

that p is cubic : i.e. g2 ~ 0 with no loss of generality. (If g2 
— 0, a new

Cartesian system may be chosen by an orthogonal transformation. This is equiva-

lent to the choice of a different parametrization of 0). Thus p(v) — 0 must have

either three real roots, two real roots (one with multiplicity 2), or a unique real

root.

The following result summarizes the character of solutions of (10), and , hence ,

the equilibria of (9).

Lemma: v0 is a real root of (10) if and only if it is a real root of the simultane-

ous equations g(v) — 0, h(v) — 0.

Proof: The forward diráction is trivial. To prove the converse, assume that v0 
is

a real root of (10) (i.e. r(v
0

) — 0 — p (v
0

) ) ,  but g(v
0
) ~ 0. In this case we have

h(v
0
) —l

— v~ — — i.e. v
0 

must be purely imaginary — contradiction.
B’ 0, 0

By this lemma , (10) mus t have either (i) no solutions , (ii) one solution , or

(iii) two solutions, with the following characteristics:

(i) If equation (10) has no solutions, syst em (9) has the trivial equilibr ium

set p — 0. However , since p is cubic there must be at least one real v0 such tha t

‘1

C 

-- - -~---
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h(v0)p(v
0
) — 0. For any such roots the relation g ( v )  — v0 must be true.

(ii) If equation (10) has a single solution v0, then system (9) has an equili-

brium set along the single line 0 — arc tan v0. If p has other distinct roots, then

they cannot be roots of g by the lemma : hence the relation 
~~~~~~~~~~ 

— v must be satis-

fied at these points. If v
0 
is the unique real root of p then the relation — v

is never satisfied for v c R. (Unless v
0 
has multiplicity 3 in p).

(iii) If equation (10) has two distinct solutions v0 
and v~ then system (9)

has equilibria along two lines 0 — arc tan v and 0 — arc tan v ’. Since p is cubic
0 h(v”)

and must have a third root, v”, which cannot solve (10), the relation , — v~0 g~v0
will hold.

It is clear that these three cases correspond, respectively, to the three types

of equation (1) identified in section 3. Using the results of section 4 we may

immediately see that the necessary and sufficient condition f or stability is given

by the second alternative of case (ii). This may be confirmed independently as

follows.

Stability Analysis of Polar Form:

Assume case (ii) holds and v
0 
is the unique real root of p (v) — 0. Then for

some 0 c N c ~~, -14 
~ ~ M. Hence, fr om (9) , we have p — 

~
-1 é ~ pflê. Since

p ~ 0 we may write

~~~tnp ~~~~~~ (11)

Now , factoring p(v) — (v—v
0
)p’(v), we must have p’(v) bounded away from zero.

If p’ is always negative let • 0 — 0~. if p ’ is positive, then let $ 0 — — ‘1”

Then (assum ing the former) we have

— p (t) cos2(.+e0)p
1(tan($+e0)J~ tan($+e0

) — v0) cos(4+e~]

r or , multiplying the polynomials in tan 6 through by cos $

— (sin($+60) — v0 cos(++00)Ia(t
,6) (12)

_ _ _ _ _  _ _  H
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where cz(t,0) is a negative definite function. Since $(sin($+6
0
) — v0 cos($+60

)]  ~ 0

equation (12) is an asymptotically stable acalar system, and •(t) -~ 0 for all initial

conditions •~ 
c 0

0
—w ,—00

+ir).

Since in p is a positive function, the stability of (12), and the majorization

• in (11) forces the boundedness of In p. 01 course in p is bounded if and only if p

is bound ed . Then ~~ — v does not hold for any v, equation (1) is globally

stable.

• Conversely , it may be similarly demonstrated , independent of the analysis in

section 4 that all remaining cases of equation (9) are unstable . Recall that in
h(v0)

each remaining case there exists at least one real v0 such that 
g(v ) 

— v0 and

r(v
0
) ~ 0. Then for initial conditions (p,00

) when 0
~ 

— arc tan v0, system (9)

may be re—written as:
‘ 2 3p — P cos 0,~ r (tan 0 )U (13)
0- 0

which is a scalar quadratic system. Since p ~ 0, equation (8) has bounded solutions

if and only if cos3 $~ r (tan O
o
) < 0. However if this is the case then cos

3 (o~ + ir)

r( tan(60 + n)] > 0 and p(tan (e~ + ~)) — 0. Hence initial condition (p0 0 
+ ir )

also yields equation (13) and has the solution

1p(t) — — ( 2 cos(00 + iT) tan 0
0)t  — p

0

which escapes to infinity in finite time.

In s~~~ary , we have re—stated the necessary and sufficient conditions for sta-

bility of equation (1) in polar form: system (9) is stable if and only if there is
h(v0)no v0 e a such that g ( v)  —

Relation of Polar to Cartesian System:

The crucial equation — v is intimately related to the quadratic operator

in (1): th. existence of a real to solve tha t equality is equivalent to the
* Excluding the case where the equality holds at v0,and v0 is simultaneously atriple root of p.

- ——---- - -~~~~~— - - -
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*
existence of a non—zero fixed direction of f.

T

~~Suppose f ( x 0
) - Ax

0(A # 0, x0 # 0). We have ~ 0 
- —

X
0

CX A ~Ol 01
I_ 1

x
2 

V

~ h(v A )
But — — . Hence letting v — — we have V

xTGx x2 0 x01 g(v 0
) 0

• x1
The converse , while strongly suggested by the condition p ~ 0 , A - 0 is immediate

if we recall the identity
p dx 2

dx 1
x(O) - x0

where x2(x1) is a local parametrization of the phase curve {p (t ;x 0
)~~t > 0) in IR2.

Namely, the ratio of the time derivatives specifies the slope of the tangent line of
h(v~)

the manifold on which a solution lies. Then the condition , . — v is equivalent
dx x I r ii 0

• to the condition — , and trajectory P
~t;Lav j )l ies  on the line x2 — v

0x1
.

Hence 
f([a ])uA([~~])

and since r(v
0
) ~1 0 impli:s ~ ~ 0 , we must have X ~ 0.

Necessa ry and Sufficient Conditions for Stability:
t In summary we have shown that the following statements are equivalent

(i) Equation (1) is globally stable.

(ii) f(x) — cTxDx and D has pure complex eigenvalues.
Stability:

(iii) The equation — v has no real solutions. 

**(iv) The quadratic operator f has no non—zero fixed directions.

and are mutually exclusive of the set of equivalent statements

(i) Equation (1) has a finite escape trajectory.

(ii) f is type (i) or D has real eigenvalues.
Instability: h(v~)

(iii) There exists a v c R such that “ — v
0 g(v,~) 0

~1 **(iv) The quadratic operato r f has a non—zero f ixed direction . 4
* Excluding the case where the equality holds at v0, and v0 is simultaneously atriple root of p. (see next footnote)T
** Exclud ing the situation wher e f(x) • c xDx , D has a double real eigenvalue , and

the only eigenvector of D is on the orthogonal complement of c. This is unstab 1e~
as shown in section 4. It is equ ivalen t to the condition that v0 is a triple root
of p in case (ii).

— -. -- — - -.-~~--- —-- - . —- —
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b. classification of Unstable Quadratic Systems:

Having reiterated earlier results using the polar coordinate transformation,

we will now classify the various types of Lnatability behavior solutions to system

( 1) may evince on the basis of their associated phase curves.

It has already been established that the solution manifolds of type (ii) and

(iii) systems given by equation (7) (i.e. where f(x) — c
TxDx) are identical to those

which are associated with the linear system (7 1).

z— B D z  (71)

It is well-k.nown that system (7 1) may possess nodal , focus , or center characteris—

tics. In the case of focus or center behavior of (7t) we have demonstrated that

(1) is stable. Otherwise the trajectories of (7) follow half the nodal manifolds

(71) to the origin , and the other half out to infinity, with trajectories starting

on an eigenvector of D escaping to infinity in finite time , [Figures 3—6).

On the other hand , we have said very little about the trajectories of systema

of type ( i ) .  Again, it is more convenient to examine the solutions of (9) than to

attempt an immediate analysis of the Cartesian system (1). The tangent slope of

phase curves in the (p,0) plane is given by

(v) ~ dp r(tan 0) g(v) + vh(v) (12)q 
d6 ~ p(tan 0) ~ h(v) — vg(v)

The poles of q correspond to the values of v such that ~~~~~~~- — v as established before .

The significant characteristics of the manifolds of (1) are determined quite easily

by a glance at the sign of q in the neighborhood of a pole. If v
0 

is a single root

of p (v) — 0 then q(v0 
+ c)q(v

0 
— c) c 0. If q(v

0 
+ c) ) 0 then solution manifolds

on the (p $) form a negative cusp around the line 6 — arc tan v0 as shown in

figure l.a. If q(v
0 

+ e) < 0 then solution manifolds on the (p,$) plane form a

positive cusp around the line e • arc tan v0, as shown in figure 7.b . If V
0 

is a

doubls root of p(v) • 0 then q(v0 + c)q(v 0 - €) > 0 and the solution manifolds will
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q (v0 1)) 0have positive (or negative) slope on both
q (v0+~~>0

sides of the line 6 — arc tan v0 as shown p
in figure 7.c.

Loops and Flows:

In the ligh t of the above observations ,

a rough translation of figures 8 into the ______________

arc tan
Cartesian plane convinces us that the proto—

(a) POSITIVE CUSP
typic behavior of system (1) type Ci) falls

into two distinct classes. The trajectories

q (v0-~)cOmust be separated by at least 1 and up to 3
q (v0+~)>0aeparatrices :the fixed directions of the map p

f as determined by the zeros of p. If f has

a unique fixed direction, then the solutions

of (1) must correspond to either figure l.a

or 7.b. In the (x1,x2) plane these proto— arc tan V0
types are given by f igure 8.a or 8.b which

we will call the “loop” or “flow” prototypes (b) NEGATIVE CUSP
r.specttisly . If f has two fixed directions,

then p must have one double root. In this q (v0-c) > 0
q (v0+~~’0case , one fixed direction will have either

the loop , or the flow characteristic , and

depicted in 7 .c. The solutions in the (x
1
,x
2
) 

} 
i(

the other will have the special feature

plane retain either a flow or a loop character arc tan v0
as shown in figure 8.c (flow dominant) and

$.d (loop dominant). Finally , if f has three (c) MIXED
fixed directions, p must have thre. roots and

ach root must evince either pure loop or flow Figure 7. Characteristic Manifolds
on the Polar Plane

characteristic ..
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ve ex~~~ les of these case:

Example 5.l .a . Flow with one fixed direction:

ro ol [1 ol
Let C — and H — . Then a) Flow

L° 1J L° °.J
g(v) • v2,h(v) — 1 and r (v) — v(v + 1),

p (v) — 1 — v~. The system is type (i)

P since g and h have no cousnon factors. The

cubic polynomial p has a single root at v 1,

hence the direction 
[~
)
~~is invariant under

• f .  The ratio g(v) — is positive in

the left—hand neighborhood of 1. Hence the b) Loop

tangent lines are given by figure 1.b.

• The actual system was simulated on the digital

computer and results are plotted in figure 9.a.

Example 5.l.b. Loop with one fixed direction:

Let G - 
[i2 

1/2] and H - 

[~~
2 

1/2] 
.

Then g(v) — — (v —v—l ) , h (v) — v +v—l) and
3 3 c) Mixed — (Flow Dominant)

C r(v) — v + 1, p (v) — v — 1. Again the

system is type (1) , and p has a unique root
rh

v — 1. The vector [ j La again fixed under1
f. Now , however, the ratio q(v) is negative

in the left—hand neighborhood of 1. Hence dO
is given by l.a. The actual system was simulated

on the digital computer and results are plotted

in figure 9.b. d) Mixed — (Loop Dominant)

Figure 8. Flow and Loop Characteristics
of Trajectories
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c. The Stability of Off—Origin Equilibria:

In the preceding discussion a polar coordinate transformation elucidated the

analysis of the global behavior of equation (1) with respect to the origin. To

complete the investigation of global behavior an account of the stability properties

of other equilibria are presented here.

Systems of type (i), with no other equilibria than the origin have been treated

in the previous subsection. For the two remaining types , recall from section 4

that equation (1) may be expressed using equation (7)

Tx c xDx

where D is either of full rank or singular. In the former case the system has a

unique line of equilibrium i.e. x — c1
. In the latter case the system has two lines

of equilibria which satisfy x c1 and Dx = 0 (a special case occurs when these two

lines coincide].

Systems of Type (iii):

If D is singular, it was shown in section 4.a that equation (7) can be rewritten

as equation (8):

-

This La type (iii) if and only if G is indefinite and of full rank. As explained

in that discussion solutions lie on parallel lines in the direction k. These, in

turn, correspond to the solution manifolds of a singular linear system whose unique

non—zero eigenvector is k. Superimposed on this field is the equilibrium set speci-

fied by the two distinct vectors e
1 
and e

2 
for which x

TGx — 0 (i — 1,2) is
x e

satisfied. In appendix 1 we present a formal analysis of the perturbed motion

around the equilibria Ac 1 and Ac 2 , A ~ IL

If k ~ e~ (i — 1,2) then either positive or negative open half line (i.e. ex-

cluding the origin) contains stable equilibria and its opposite closed half line

(i.. including the origin) contains unstable equilibria. Each stable half line

k
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4
is a locally attractive invariant set. This situation is portrayed in figure 3.a

(section 4).

If k — e1 then the direction of the field is itself a line of equilibria , all

of which must be unstable. In this case , the remaining line of equilibria has an

open half line of stable and a closed half line of unstable points. The unique

stable half line is a locally attractive invariant set. This situation is portrayed

in figure 3.b (section 4).

Systems of Type (ii):

As established in section 3 if D is nonsingular (or singular and possesses a

zero eigenvector in the direction orthogonal to c) then the system is type (ii).

Again the solutions lie on manifolds determined by the associated linear system

z Dz

interrupted by the zero line. In appendix 1 it is formally shown that in all cases

there must be a half line of stable equilibria (excluding again the case where the

only eigenvector of D is orthogonal to c). The half line is closed if and only if

D has purely complex eigenvalues. This line is a locally attractive invariant set.

Two representative systems are depicted in figures 5 (section 4).
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Appendix I: The Stability of 0ff—Origin  Equilibria

Recall that system (1), x — f ( x ) , may be re—written as equation (7),

x — c
T
xDx, if there are any off—origin equilibria. Around an arbitrary equili-

brium state, Ae(eTc — 0 and A £ ~R ) , the perturbed equation of motion z — f(e + z)

— f Cc) may be simplified and written as:

z — c zDXe+c
TzDz

Define the matrix R — [De el and the change of basis y — R 1z.

. —l T —l T T T —l
Then y — AR Dec Ry + R DRyc Ry. Since c R = [c De,O) and R Dc we may

L0J
re—write the last equation as

- Ay
1
c~De 
([
i]+ R

_1
DRY) (A.l)

Fact: System (A.l) is locally stable if and only if Ac
T
De < 0 in which case the

line y 1 — 0 is an a t t ract ive set.

Proof: If Ac
T
De > 0 let v — y~. Then v AcTDey~ + y1

0(y2). Since v > 0 in the

region v > 0 for small enough values of ~yJ1 , the system is unstable by Chetaev
’s

theorem.

If AC
T
De < 0, let v = 1/2~T~• Then v a A cTDey~ + y10(y

2
) which is negative

semi-definite in a small enough neighborhood of the origin,~ . Since v is always

on (x
1 # O }nr z we know {x

1 
— O}nci is attractive. Since the equation of perturbed

motion about any point in {x
1 — 0) is of the form (A. l) , the same argument works

on the entire line.

If the system is type (iii) then using equation (8) we know

x - ~~
TG - kxTbdTx (8)

Thus the matrix D in (7) may be either kbT or kdT with c d or c - b respectively.

If k ~ d and Ic ~ b then AcTDe c 0 for either A 0 or A > 0 using either form of

* Of course this is not possible if Dc — Ae . In this case , either choose the
second zero line (if the system is type (i i i))  and perform the identical
analysis , or if the system is type (ii) then there is no attractive half line .
(see second footnote on p. 16).

(‘1

_______________________________________________________ ________________ _________________________________________ ______________ 
________________________ 

I
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D. Thus there are two a t t rac t ive  open half lines. If k1 d or k 1 — b then

• C
T
D. — 0 for  one choice of D. Hence there is only one open attractive half line.*

If th. system La type (ii)  then the matrix D in equation (1) is unique and

ei ther  nonaingular  or equal to ccT (see section 4). II c
rDe ~ 0 then there must

be an attractive half line (open or closed depending upon the stability of the

origin of course) .  Not ice  c
TDe — 0 only if e is the unique eigenvector of

(see footnote on previous page).

a

* Of course this is not possible if Dc — Ac. In this case , either choose the
second zero line (if the system is type (iii)) and perform the identical
analysis , or if the sys tem is type (ii) then th ere is no attractive half line.
(see second footnot e on p. 16) .

V V 
- — ---- ----- - - - V
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